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There are many studies on the vortex-induced vibrations of a cylindrical body,
but almost none concerned with such vibrations for a sphere, despite the fact that
tethered bodies are a common configuration. In this paper, we study the dynamics of
an elastically mounted or tethered sphere in a steady flow, employing displacement,
force and vorticity measurements. Within a particular range of flow speeds, where the
oscillation frequency (f ) is of the order of the static-body vortex shedding frequency
(fvo), there exist two modes of periodic large-amplitude oscillation, defined as modes
I and II, separated by a transition regime exhibiting non-periodic vibration. The
dominant wake structure for both modes is a chain of streamwise vortex loops on
alternating sides of the wake. Further downstream, the heads of the vortex loops
pinch off to form a sequence of vortex rings. We employ an analogy with the lift on
an aircraft that is associated with its trailing vortex pair (of strength Γ ∗ and spacing
b∗), and thereby compute the rate of change of impulse for the streamwise vortex
pair, yielding the vortex force coefficient (Cvortex):

Cvortex =
8

π
U ∗

v b∗(−Γ ∗).

This calculation yields predicted forces in reasonable agreement with direct
measurements on the sphere. This is significant because it indicates that the principal
vorticity dynamics giving rise to vortex-induced vibration for a sphere are the motions of
these streamwise vortex pairs. The Griffin plot, showing peak amplitudes as a function
of the mass–damping (m∗ζ ), exhibits a good collapse of data, indicating a maximum
response of around 0.9 diameters. Following recent studies of cylinder vortex-induced
vibration, we deduce the existence of a critical mass ratio, m∗

crit ≈ 0.6, below which
large-amplitude vibrations are predicted to persist to infinite normalized velocities.
An unexpected large-amplitude and highly periodic mode (mode III) is found at
distinctly higher flow velocities where the frequency of vibration (f ) is far below
the frequency of vortex shedding for a static body. We find that the low-frequency
streamwise vortex pairs are able to impart lift (or transverse force) to the body,
yielding a positive energy transfer per cycle.

1. Introduction and preliminary work
The problem of vortex-induced vibration (VIV) of structures is important in many

fields of engineering. This has led to a large number of fundamental studies that are
summarized in the comprehensive reviews of Sarpkaya (1979), Griffin & Ramberg
(1982), Bearman (1984), Parkinson (1989) and Williamson & Govardhan (2004) and
the books by Blevins (1990), Naudascher & Rockwell (1994), Sumer & Fredsoe (1997)
and Anagnostopoulos (2002). Most of these studies have been on cylindrical structures,
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and prior to some preliminary work (Williamson & Govardhan 1997; Govardhan &
Williamson 1997; Jauvtis, Govardhan & Williamson 2001) there is almost no reported
work on vortex-induced vibrations of a sphere despite its practical significance. Some
practical examples include tethered bodies like marine buoys, underwater mines,
tethered balloons in the atmosphere, and towed objects behind ships.

In the present work, we are interested in the case of an elastically mounted sphere
in a steady uniform flow, which is perhaps one of the most basic fluid–structure inter-
action problems that one can imagine. We shall consider both the case where the
sphere is free to move only along the transverse (y) direction to the flow, and also
the case where the sphere is tethered and is thus free to move in both the streamwise
(x) and transverse (y) directions. For the cylinder, the transverse (y-only) case has
been extensively studied, while there are very few recent studies on the more practical
situation where the cylinder is free to move in both transverse and streamwise
directions (Moe & Wu 1990; Sarpkaya 1995; Jeon & Gharib 2001; Jauvtis &
Williamson 2003, 2004). It should be noted here that recently Provansal, Schouveiler &
Leweke (2004) have reported on preliminary experiments on the dynamics of a
neutrally buoyant tethered sphere at low Reynolds numbers (Re = 600 − 800).
For this configuration, where the tether is parallel to the flow, they find periodic
trajectories, such as elliptic orbits in the cross-section normal to the flow. The range
of Reynolds numbers for the present investigation is from Re = 2000 to Re = 12 000.
Although not directly relevant to the present problem, it should also be mentioned
that there have been some previous investigations of the dynamics of a tethered
sphere in surface waves (Harleman & Shapiro 1961; Shi-Igai & Kono 1969; Ogihara
1980; Vethamony, Chandramohan & Sastry 1992; Carpenter, Leonard & Yim 1995).

In the conceptually simple case of the elastically mounted sphere in a steady flow,
we seek to understand the following fundamental questions in the present work:

What modes of response exist for an elastically mounted sphere?
What are the principal vortex dynamics that can give rise to vortex-induced

vibration of a three-dimensional body such as a sphere?
How does the peak amplitude response vary with mass and damping?
What is the effect of mass ratio on the amplitude and frequency response?
We shall briefly introduce an equation of motion to represent the oscillations of the

sphere in the transverse y-direction (perpendicular to the free stream), in the manner
of the equation generally used in the cylinder VIV case, as

mÿ + cẏ + ky = Fy, (1.1)

where m = total oscillating structural mass (i.e. not including fluid added mass); c =
structural damping; k = spring constant; Fy = fluid force in the transverse direction.
When the body oscillation frequency is synchronized with the periodic vortex wake
mode, it is often found in VIV problems that the response displacement y(t) and the
force Fy(t) are represented well by

y(t) = A sin(ωt), (1.2)

Fy(t) = Fo sin(ωt + φ), (1.3)

where ω =2πf ; f = transverse oscillation frequency. The phase angle φ, between
the fluid force and the body displacement, is crucial in determining the energy
transfer from the fluid to the body motion, and hence in influencing the amplitude of
oscillation, as pointed out clearly in previous papers on cylinder VIV. We select a set
of relevant non-dimensional parameters in table 1.
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Mass ratio m∗ m

πρD3/6

Damping ratio ζ
c

2
√

k(m + mA)

Normalized velocity U ∗ U

fND

Amplitude ratios A∗
x A∗

y

Ax

D

Ay

D

Transverse frequency ratio f ∗ f

fN

Transverse force coefficient CY

F
1
2
ρU 2(πD2/4)

Reynolds number Re
ρUD

µ

Strouhal number S
fvoD

U

Table 1. Non-dimensional groups. Streamwise direction is along the x-axis, and the y-direction
is transverse to the flow. The added mass, mA, is given by mA = CAmd , where md is the displaced
fluid mass and CA is the potential added mass coefficient. (CA = 0.5 for a sphere). In the above
groups, fN = mechanical natural frequency in the medium, D = sphere diameter, ρ = fluid
density, U = free-stream velocity, µ = viscosity, fvo = non-oscillating body vortex shedding
frequency. It is straightforward to define a damping ratio based on critical damping in vacuo,
by multiplying ζ by the factor [(m∗ + CA)/m∗]1/2.

The response amplitude and frequency may be derived in a straightforward manner
from equations (1.1)–(1.3), and are formulated here, along the lines of Khalak &
Williamson (1999) for a cylinder, as follows:

A∗
y =

3

32π2

CY sin φ

(m∗ + CA)ζ

(
U ∗

f ∗

)2

f ∗, (1.4)

f ∗ =

√
(m∗ + CA)

(m∗ + CEA)
, (1.5)

where CA is the potential flow added mass coefficient (CA =0.5 for a sphere), and
CEA is an ‘effective’ added mass coefficient that includes an apparent effect due to the
total transverse fluid force in phase with the body acceleration (CY cos φ):

CEA =
3

16π2A∗
y

(
U ∗

f ∗

)2

CY cos φ. (1.6)
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Figure 1. Comparison of typical VIV response for a sphere and a cylinder. In both cases,
we observe similar multiple response modes, as well as similar characteristics whereby the
vibration frequency rises distinctly higher than the system natural frequency (f ∗ > 1). In (a)
and (b), we show sphere amplitude (A∗) and frequency (f ∗) response (for somewhat different
experimental conditions: (a) m∗ = 2.83; (b) m∗ =0.76, where ζ =0.008 in both cases). In (c)
and (d), we show cylinder VIV response ((c) m∗ = 8.63, ζ = 0.0015; (d) m∗ = 1.19, ζ = 0.005),
from Govardhan & Williamson (2000). The line for fvo indicates the static-body shedding
frequency. Reynolds number, Re ∼ 3500 for peak response conditions, in all cases.

In this work, we determine fN in water by actually measuring fN in air (close to its
value in vacuo), and thereafter multiply this value by the factor [m∗/(m∗ + CA)]1/2 to
deduce fNwater . (It is simple therefore to determine f ∗

vac accurately by multiplying our
f ∗ by this factor, if so desired).

The first and most obvious question that one might ask regarding the vortex-
induced vibrations of a sphere is: Does an elastically mounted sphere vibrate in a steady
flow? The answer to this most basic question was apparently not made clear prior to
some preliminary work reported in Williamson & Govardhan (1997), where it was
shown that the elastically mounted sphere does indeed oscillate vigorously at large
transverse amplitudes of the order of a diameter, over a range of flow speeds. (The
fact that tethered bodies vibrate in a flow was probably well known within offshore
engineering companies, as well as to children with balloons, rather than in the general
literature). Typical transverse vibration response (A∗

y) can be seen in figure 1, compared
with typical cylinder response. It should be noted that, although the tethered sphere



Vortex-induced vibrations of a sphere 15

response was obtained for a body free to move in both the streamwise (x) and the
transverse (y) directions, similar responses are also obtained for the spheres cons-
trained to move transverse to the flow direction, as will be shown in the present work.

Similar broad characteristics of the response amplitude and frequency are found
for the sphere and cylinder VIV cases in figure 1. The amplitude response, for
the cylinder, indicates three distinct response branches, namely ‘Initial’, ‘Upper’ and
‘Lower’ branches. These three modes are separated by two mode jumps, at the
Initial ↔ Upper, and Upper ↔ Lower mode transition. Govardhan & Williamson
(2000) showed that there is a phase jump corresponding to each of the mode
transitions; the Upper ↔ Lower transition is associated with a jump in the
conventionally used ‘total phase’ (between total transverse force and displacement),
while the Initial ↔ Upper mode jump is associated with a jump in ‘vortex
phase’ (between the ‘vortex force’ and the displacement). It was also shown using
simultaneous force and digital particle image velocimetry (DPIV) measurements, that
the switch in the timing of vortex shedding is linked to a jump in ‘vortex phase’ (at
the first discontinuity), and not to the jump in ‘total phase’. This raises the question:
Is there a change in the timing of vortex formation for the elastically mounted sphere?
In the present work, we shall show using DPIV measurements in the sphere wake
coupled with direct force measurements that such a change in the timing of vortex
shedding does occur for the elastically mounted sphere, although it is not necessarily
as sharp as for the cylinder. Further, we shall use this change in the timing of vortex
formation to demarcate two modes of periodic response, namely Mode I and Mode II,
within the response plot for the sphere in figure 1.

One might note that the character of the cylinder response, as shown in figure 1,
is reasonably unaffected by a variation of Reynolds number, at least over the range
2000–30 000 (see Williamson & Govardhan 2004), although the peak amplitudes of the
upper branch are found to increase with Re. (The fact that the general characteristics
of the response for both the sphere and cylinder is quite unaffected by a variation of
Re, in investigations to date, is apparently not the case when a cylinder is ‘tethered’
at both ends of the span, where Carberry, Ryan & Sheridan (2003b) find distinct
changes in response and vortex modes as flow speed and Re change.)

In the case of the circular cylinder, the forced vibration experiments by Williamson
& Roshko (1988) over a wide range of normalized flow speeds and amplitudes, showed
a number of different vortex formation modes, which were defined, for example, as
‘2S’ indicating 2 Single vortices formed per cycle and ‘2P’ meaning 2 Pairs of vortices
formed per cycle. For a transversely oscillating sphere, the only related work looking
at such a synchronized wake structure (to the best of our knowledge) is the recent
study of Brücker (1999), on the wake structure behind a bubble rising through a fluid,
in a zig-zag path. Using careful DPIV measurements of the streamwise vorticity, he
was able to infer the existence of hairpin vortices of the type seen for a stationary
sphere, as observed for example by Ormières & Provansal (1999). In the stationary
sphere case, it is well known that there exist two wake transitions as Re is increased.
The first transition at Re ≈ 200, results in the wake losing its axisymmetry, and
forming two steady streamwise vortex trails. The formation of trailing vortex pairs,
aligned with the flow, in the wake of an axisymmetric body, was mentioned 75 years
ago in the original work of Stanton & Marshall (1930), who clearly observed such
a wake downstream of a circular disk normal to the flow. The other transition at
Re ≈ 280 for a sphere, results in the wake becoming unsteady with periodic shedding
of vortex loops, often referred to as hairpin vortices. For Reynolds numbers above the
second transition, experimental visualizations from Sakamoto & Haniu (1990) and
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more recently the striking visualizations of Leweke et al. (1999), show that all the shed
hairpin vortices are one-sided, although the study by Johnson & Patel (1999) indicates
that there might also exist small induced hairpin vortices of opposite sign in between
the one-sided structures. On the other hand at Re > 800, Sakamoto & Haniu (1990)
indicate, from dye visualizations, that the sphere wake is a two-sided chain of shed
hairpin vortices of alternate sign, of the type also clearly visualized in Perry, Lim &
Chong (1980) in the case of a coflowing jet or wake. In the present study at Reynolds
number in the range 2000–12 000, we will find the principal vorticity of the vibrating
sphere wake to comprise a two-sided chain of vortex loops, with the appearance
of alternating-sign vortex rings further downstream. The sides of the vortex loops
consist of ‘streamwise vortex pairs’, where the vortex axes align approximately parallel
with the free stream (in the manner of aircraft wing tip vortices). In this work, such
streamwise vortex pairs should not be confused with the clearly different vortex pairs
formed by a vibrating cylinder, where, in that case, the vortex axes are principally
normal to the free stream.

A fundamental question regarding such an elastically mounted system, is how the
peak amplitude response will vary as a function of mass and damping {m∗, ζ}? Much
recent discussion on this point for an elastically mounted cylinder is reviewed in
Williamson & Govardhan (2004). The effective use of a ‘Griffin plot’, whereby the
peak response amplitude (A∗

max) for the cylinder has been plotted versus a combined
mass–damping parameter, (m∗ + CA)ζ , will yield a good collapse of such data in the
present case for the sphere.

The effect of the mass of the body on the amplitude and frequency response of
a cylinder (at fixed mass–damping) has received a lot of attention recently. In the
classical cylinder experiments in air, like Feng (1968), the mass ratios were very high,
m∗ ∼ 100, and the corresponding oscillation frequency was very close to fN , such that
f ∗ = f/fN ≈ 1, at which point the wake formation frequency also matches the body
vibration frequency, and we have synchronization. However, at the low mass ratios
typically found for a structure vibrating in water where m∗=O(10), Moe & Wu (1990),
Khalak & Williamson (1997), Gharib et al. (1998) and Govardhan & Williamson
(2000) observe a marked departure of f ∗ from unity during synchronization, as may
be seen from the frequency response for a cylinder in figure 1. A similar departure
is also seen for the elastically mounted sphere at low m∗, as shown by the typical
response in figure 1. This deviation of f ∗ is not unexpected, based on the discussion
in the reviews of Bearman (1984) and Williamson & Govardhan (2004).

The recent cylinder VIV experiments of Khalak & Williamson (1996, 1997) at low
mass ratio (where the mass–damping (m∗ζ ) was maintained at a very low value)
show a significant increase in the regime of synchronization (the extent of U ∗ over
which there are significant vibrations) as m∗ is reduced. However, they found that the
data sets collapse very well when replotted versus the parameter (U ∗/f ∗)S, which is
equivalent to (fvo/f ) (or the inverse of the ratio of actual body oscillating frequency to
the fixed-body shedding frequency). With the above parameter, a good correspondence
was also found between the vortex wake modes of the free response branches and
the vortex mode regimes deduced from forced vibration in the Williamson & Roshko
(1988) map of modes. In the present work with the sphere, we shall explore regimes
of vibration in such a plane {(U ∗/f ∗)S, A∗

y}.
Recent experiments for a cylinder (Govardhan & Williamson 2000, 2002) indicate

that the synchronization regime can be extremely large for low m∗. In fact, it was
shown that there exists a critical mass ratio (m∗

crit ), below which the synchronization
regime will continue indefinitely to infinite U ∗. Under these conditions, large-amplitude
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vibrations will persist up to infinite velocities, while the frequency (f ∗) also increases
indefinitely. The numerical value of the critical mass ratio for the circular cylinder,
at low mass–damping, was determined to be 0.54. In our preliminary experiments on
the tethered sphere in Williamson & Govardhan (1997), for small mass (m∗< 1), we
were unable to reach the end of the synchronization regime for the highest velocities
possible in our water channel. This suggests that our mass ratios could have been
close to or below a critical value. Based on the present measurements, we shall
evaluate the critical mass for a sphere in vortex-induced vibration.

The synchronization regime discussed so far has been for flow speeds where the body
oscillation frequency (f ) is close to the static body vortex shedding frequency (fvo), so
that (U ∗/f ∗)S = (fvo/f ) ∼ 1. At high normalized velocities outside this ‘fundamental
synchronization regime’, the cylinder does not show any significant response, as may be
seen from figure 2(c), taken from our own cylinder VIV experiments. However, in the
case of the sphere, large periodic oscillations are seen at high normalized velocities, as
discovered by Jauvtis et al. (2001), and shown in figure 2(a). Although it seems as
though the sphere response terminates at (U ∗/f ∗)S ≈ 2.2, a new and quite surprising
mode of oscillation appears when (U ∗/f ∗)S > 3.0, which we refer to as mode III.
The body oscillations in this mode are highly periodic, as indicated by the example
time trace in figure 3. This regime can continue to rather large normalized velocities,
(U ∗/f ∗)S ∼ 8. This would imply that a large number of vortex structures are shed
per oscillation cycle (based on observations of the static sphere wake), and raises the
important question of how the fluid is able to transfer energy through the vortical wake
to the body, for these mode III oscillations to exist. In the present work, we shall show
that there exist periodic streamwise vortex pairs which force the structure to vibrate.

It should be noted that the mode II and mode III regimes are not always separated
by a desynchronized region. When the sphere is constrained to move only in the
y-direction, with low mass–damping, the mode II and mode III regimes are joined, as
may be seen from figure 2(b). However, a distinct change in the slope of the amplitude
response curve still distinguishes the two regimes. For the sphere that is free to move
in both the transverse and streamwise directions, this was not seen to occur, and there
was always a desynchronized regime between modes II and III.

Following a description of the experimental details in the next section (§ 2), we
shall present the effect of a very large variation in mass–damping and mass ratio on
the response within the fundamental synchronization regime, in § 3. We shall look at
direct force measurements on the elastically mounted sphere in § 4. The wake structure
corresponding to the two modes will be discussed in § 5 utilizing flow visualization
and DPIV vorticity measurements in two perpendicular planes. Using the measured
vorticity and the concept of vorticity impulse applied to the streamwise vortex pairs (in
analogy with the trailing vortex pairs behind an aircraft), we shall predict the unsteady
lift force on the body in § 6. One may deduce from the agreement with direct force
measurements, that it is the dynamics of such streamwise vorticity which gives rise to
vibrations of a sphere. The wake vortex structures that enable the unexpected existence
of the periodic mode III oscillations at high normalized velocities will be discussed in
§ 7. In § 8, we investigate the effect of mass ratio on the response dynamics, evaluating
a critical mass of m∗

crit ≈ 0.6 for the sphere. Finally, we present conclusions in § 9.

2. Experimental details
The experiments with the sphere constrained to move transverse (y) to the

flow direction, were performed with the hydroelastic facility described in detail in



18 R. N. Govardhan and C. H. K. Williamson

A*
y

1.00

I

U

L

0 1 2 3 4

0.25

0.50

0.75

A*
y

0 1 2 3 4

0.25

0.50

0.75

A*
y

0 1 2 3 4

0.25

0.50

0.75

Mode I

Mode II

Mode III

Mode I

Mode II

Mode III

(U*/f *) S

(a)
Sphere – xy

(b)
Sphere – y only

(c)
Cylinder – y only

Figure 2. Response amplitude plots for different VIV systems over a wide range of normalized
velocities, (U ∗/f ∗)S. The mode III response for the elastically mounted or tethered sphere in (a)
and (b) is clearly not evident in the cylinder VIV system in (c). Mass and damping values are:
(a) m∗ = 11.7, ζ = 0.0025, (b) m∗ = 53.7, ζ =0.017, (c) m∗ = 27.5, ζ = 0.0054. Re at maximum
A∗

y is close to 3000 for all cases.
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Figure 3. Highly periodic vibration is observed for modes I, II and III for the tethered sphere.
These time traces, along with the desynchronized response case, correspond to the � symbols
in figure 2(a).

Khalak & Williamson (1999), in conjunction with the Cornell-ONR Water Channel.
The hydroelastic facility comprises air-bearings mounted above the channel test
section, which allows a sphere in the fluid, supported by a vertical thin rod, to move
transverse to the free stream, as shown in figure 4(a). The fluctuating lift force acting
on the sphere was measured by a force balance utilizing LVDTs (linear variable
displacement transducers), while the body displacement was measured using a non-
contact (magnetostrictive) position transducer. The turbulence level in the test section
of the water channel was less than 0.9%, in the 15 in. × 20 in. (0.381 m × 0.508 m)
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Figure 4. Schematic of the experimental arrangement for the elastically mounted sphere, seen
in side-view. (a) Hydroelastic sphere constrained to move only transverse to the free stream
in a direction normal to the page (y-only). (b) Tethered sphere free to move in both the
transverse and streamwise directions (xy-motion), for buoyant spheres (m∗ < 1) and for heavy
spheres (m∗ > 1).

cross-section, over the range of free-stream velocities U (0.04 − 0.32 m s−1) used in
this study.

The other set of experiments employed a tethered sphere, which allowed both
streamwise (x) and transverse (y) motions. For ‘heavy’ spheres with m∗ > 1 the tether
was attached to the top of the test section, as shown in figure 4(b), while for ‘light’
buoyant spheres with m∗ < 1, the point of tether attachment was at the base of the test
section. For these tethered spheres, displacements of the body were obtained using an
Optron optical bi-axial displacement transducer. These tethered sphere experiments
were performed both in the Cornell-ONR water channel (for low m∗), and in an
open-circuit suction wind tunnel (for very high m∗). The turbulence intensity in
the 30.5 cm × 30.5 cm test section of the wind tunnel was within 0.1%. The natural
frequency (fN ) of these tethered systems depends on both the net buoyancy or weight
of the sphere, and the drag on the body, as discussed in Williamson & Govardhan
(1997). In the present experiments, the natural frequency (fN ) was calculated using
relations from Williamson & Govardhan (1997), although as discussed in that paper,
in most cases the drag force may be neglected, and fN is given by the approximate
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U
≈

(
1

2π

)
1

Fr
√

(L/D)

√
1 − m∗

m∗ + CA

, (2.1)

where Fr = U/
√

gD is the Froude number, and L is the tether length. On a related
note, the structural damping of these tethered systems was estimated from the energy
dissipated in one cycle, due to the drag acting on the tether line, as it moves through
the fluid. Another aspect of such tethered bodies is the extent to which they lean over
due to body drag, and as one might expect this ‘tether angle’ increases with flow speed,
as shown by measurements in Williamson & Govardhan (1997). In the experiments
reported here, this tether angle had a maximum value of 25◦ from the vertical, at the
highest flow speeds, with typical angles of around 12◦ at maximum transverse response
(for flow speeds yielding (U ∗/f ∗)S = 1.8 in figure 8). The principal body oscillations
are in the transverse y-direction. Vertical oscillations in the z-direction amount to
less than 5% of those in the transverse direction. It should also be mentioned here
that the body response for the tethered sphere (xy motion) and hydroelastic sphere
(y-only) compared well for similar mass–damping parameter, as shown in the example
of figure 5.

Spheres of diameters ranging from 0.0254 m to 0.0817 m, made of plastic and
aluminium, were used in this study. The diameter of the supporting rod used with
the air-bearing system was typically about 30 times smaller than the diameter of the
test sphere, while for the tethered sphere experiments, the diameter of the tether wire
used was typically about 200 times smaller than the diameter of the test sphere.
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The velocity field in two perpendicular planes within the sphere wake was measured
using digital particle image velocimetry (DPIV). For this purpose, the flow was seeded
with 14-micron silver-coated glass spheres, which were illuminated by a sheet of laser
light from a 5 W Argon ion laser. Our implementation of the technique is essentially as
described in detail in Govardhan & Williamson (2000). We used a two-step windowing
process (with window shifting) to obtain particle displacements between image pairs
to deduce the velocity field. In all cases, 64 × 64 pixel interrogation boxes were used
for the first correlation followed by 32 × 32 pixel boxes for the second correlation.
The number of particles in a 32 × 32 pixel window was approximately of the order
of 15, high enough to give strong correlations, although the volume fraction of the
tracer particles was very small, of the order of 2 × 10−6. A box overlap of 50% was
used in the second correlation, which resulted in a set of 3600 vectors (60 × 60) for a
typical velocity field.

For the spatio-temporal reconstruction of the sphere wake, 16 sets of streamwise
vorticity fields, each phase-averaged over 10 cycles, were used. Circulation strengths
of the streamwise vortex pairs and their location were measured from the individual
vorticity plots, and three-dimensional spatio-temporal views generated with a simple
spline fit for the strength and location of the vortex pairs. A convection velocity U

(equal to the free-stream velocity) has been used for the purpose of 3D image cons-
truction, so that time t may be converted into streamwise location using x =Ut .

All the obtained images, and hence the DPIV velocity fields, were phase referenced
with respect to the position signal. This allowed possible phase averaging (over 10
cycles) of the velocity fields, along the lines of Gu, Chyu & Rockwell (1994). This
is useful at the moderate Reynolds numbers of interest (Re ∼ 2000 to 12 000) in the
present study, to obtain a clear picture of the synchronized large-scale wake vortex
structures, without the presence of weak smaller scale vortical structures. There is a
thickening (around 10%) of the separating shear layers close to the body from the av-
eraging process, and the layers seem somewhat thick. However, the resulting vorticity
images are comparable with the photographic PIV measurements of Carberry et al.
(2003a) for a cylinder wake at similar Reynolds numbers. Throughout this paper, we
have defined the normalized transverse amplitude response (A∗

y), as A∗
y =

√
2 (yrms/D),

which for purely sinusoidal oscillations, is simply the amplitude of motion.
The origin of the coordinate system is fixed at the centre of the sphere, at zero

displacement. The x-axis is measured downstream, the y-axis is horizontal and
perpendicular to the flow direction, and the z-axis is vertical. We describe motions as
‘streamwise’ if they are roughly parallel to the free stream (x-direction), and ‘transverse’
when they are roughly parallel to the y-direction. Since the dominant dynamics in all
the present experiments are transverse to the flow, we note later that there is obviously
a preferred orientation of the streamwise vortex pairs in the wake, which is naturally
induced by these vibrations. The calculated transverse force in § 6 is also termed as a
‘lift’ force (in the y-direction), in analogy with aircraft trailing wake vortices.

3. Response measurements
As described in the Introduction, the elastically mounted sphere shows two modes

of response within the fundamental synchronization region. In this section, we shall
focus our attention on this principal regime, and investigate the effect of a very large
variation in the mass–damping parameter [(m∗ + CA)ζ ], and mass ratio (m∗), on the
response. The mass–damping parameter will be varied over three orders in magnitude
from about 0.001 to 1. The mass ratio will be varied over nearly four orders of
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Figure 6. (a) Synchronized response regime and (b) the Griffin plot. The Griffin plot is a com-
pilation of peak response amplitude data as a function of mass-damping parameter, (m∗ + CA)ζ ,
and exhibits a saturation amplitude of A∗

y ≈ 0.9, when (m∗ + CA)ζ < 0.02. In this plot, the open
symbols are for y-only motion; bull’s eyes are for tethered (xy) spheres. The following para-
meters apply to (a) for increasing amplitude plots: (m∗ + CA)ζ = 0.333, 0.290, 0.261, 0.190, 0.151,
0.029; m∗ =198.4, 156.6, 60.6, 53.6, 27.5, 2.8. Re at A∗

max = 3800, 4500, 6300, 5300, 5500, 9100.
In (b), for decreasing (m∗ + CA)ζ below 0.02: Re at A∗

max = 9100, 6800, 4000, 10500, 7700.

magnitude from about 0.1, for a buoyant sphere in water, to about 1000, for a steel
sphere in air.

3.1. Effect of mass–damping parameter

By systematically varying the mass–damping parameter, (m∗ + CA)ζ , over a large
range of values, a family of response plots was obtained, a few of which are shown in
figure 6(a). As one might expect, from the form of equation (1.4), as one decreases
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mass–damping, the peak response amplitude increases, and the regime of synchroni-
zation increases. This yields a (hatched) regime where synchronization may be found.
The regime boundaries in figures 6(a) and 8 indicate the regime of significant periodic
response. This regime is similar to the well-known synchronization region or ‘lock-in’
plots for the circular cylinder obtained from forced vibration studies by Koopmann
(1967), Bearman & Currie (1979), and others, and shows the same general trend of a
larger range of ‘lock-in’ (extent of (U ∗/f ∗)S), as the oscillation amplitude is increased.
However, it is significant that the present synchronization region has been obtained
from free vibrations, and hence, has the added criterion that there should be positive
energy transfer to the body.

We compile a ‘Griffin plot’ in figure 6(b), showing the variation of the peak response
amplitude (A∗

y) as a function of mass–damping parameter (m∗ +CA)ζ . The plot
suggests that a saturation amplitude of A∗ ≈ 0.9 is reached for low mass–damping,
(m∗ + CA)ζ < 0.02. Such a saturation amplitude has been discussed extensively by
Griffin et al. (1982) and others for the circular cylinder. An important point to note
from figure 6(b) is that, although the data points correspond to a large range of mass
ratios (m∗ = 0.5 − 200), they all seem to lie along a single curve when plotted using
(m∗ + CA)ζ , demonstrating that a combined mass–damping parameter is effective in
collapsing the peak-amplitude data over a large range of values for sphere VIV.

It is also of relevance to note the relative insensitivity of the peak transverse
amplitude (A∗

y) in this Griffin plot, even as the streamwise motion (A∗
x) increases up

to 30% of A∗
y , for very low mass ratios (see figure 9). This is quite different from the

cylinder VIV problem with two degrees of freedom in Jauvtis & Williamson (2004),
where the presence of streamwise motion has a significant influence on transverse
vibration. We also note that there is good agreement between the peak amplitudes
for the tethered case (xy) and for the hydroelastic (y-only) case in the Griffin plot of
figure 6(b), even down to very low mass ratios, m∗ < 1.

As a final point concerning the Griffin plot, we observe that although the
measurements are over a range of Reynolds numbers from Re = 2000 to 12 000,
all the data seem to lie along a single line, indicating that there is no apparent Re

effect on the response amplitude within this Re range. For example, at the saturation
amplitude level, (m∗ + CA)ζ < 0.02, the Reynolds numbers for the data points range
from about 4000 to 10 500. Further evidence for this Reynolds number independence
will be also seen in the next subsection.

3.2. Effect of mass ratio

An important effect of a reduction in mass ratio on the amplitude response of an elastic
cylinder is the widening of the synchronization regime in U ∗. We find very similar
behaviour for the sphere, as shown in figure 7. Compared to the larger mass ratio
(m∗ = 2.8) case in figure 1, the synchronization regime for very low mass (m∗ =0.45)
is significantly increased. In fact, the end of the synchronization could not be reached
for the highest velocities possible in our water-channel facility. Further, as one might
expect from the cylinder studies, the response frequencies (figure 7) become markedly
higher as mass ratio is reduced showing in this case resonant vibration up to f ∼ 2fN .

When m∗ is sufficiently small, we find the presence of a region of non-periodic
response within the synchronization region for U ∗ ≈ 6, as shown by the time trace in
figure 7(b). On either side of this region, there are very periodic regimes in (a) and (c).
The first of these periodic regions, centred around U ∗ ≈ 5, is referred to as mode I,
and corresponds to a flow velocity where the body vibration frequency (f ) is in
resonance with the natural frequency (fN ). One might expect the amplitude to keep
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Figure 7. Typical amplitude and frequency response for a very light tethered sphere
(m∗=0.45). Solid symbols indicate highly periodic transverse vibration, while the transition
regime (open symbols) shows the regime of non-periodic oscillations. �, �, transverse response
(tether length (L)/diameter= 5.9 and 13.8); �, �, streamwise response (L/D =5.9 and 13.8).
Re at U ∗= 5.0 is 2000 for L/D = 13.8, and 3100 for L/D =5.9.

decreasing as the flow speed is further increased. However, as reported in Williamson
& Govardhan (1997), another mode of vibration, which we refer to as mode II, takes
hold, and the amplitude again begins to increase, and reaches much larger values than
before.

The response of a tethered sphere (xy-motion) at very low mass ratio, shown in
figure 7, indicates that the principal motions are in the transverse direction (A∗

y max ≈
0.9), although we also find streamwise amplitudes (A∗

x max ≈ 0.2). We compare, in
figure 7, two different tether lengths (tether length/diameter= 13.8 and 5.9), which
yield different natural frequencies (fN ), and hence different Re ranges. The collapse
of the data suggests that the response is reasonably independent of Re within the Re

range of interest (Re =2000 to 12 000), as discussed earlier.
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dashed line shows the response for a higher mass, m∗= 2.8 without such a distinct transition.

When we plot amplitude against (U ∗/f ∗)S, instead of U ∗, in figure 8, we find that the
two periodic regions of response are markedly separated within the synchronization
region. There are indeed two distinct modes of oscillation at this low mass ratio,
m∗ = 0.45, although at higher m∗ =2.8, the response seems to remain periodic and
transition continuously from mode I to mode II, as represented by the dashed curve
response.

Finally, the streamwise amplitude (A∗
x) is found to be dependent on the mass ratio,

for sufficiently small mass, m∗< 6, as shown in figure 9. For larger sphere mass, m∗> 6,
one may consider the streamwise amplitude as negligibly small.

4. Force measurements
Direct measurements of the fluctuating transverse force on the oscillating

sphere were made for an elastically mounted sphere (y-only) for m∗= 31 and
(m∗ + CA)ζ = 0.15. In this section, we shall focus our attention on force measurements
for the first two modes within the fundamental synchronization regime.

Before proceeding to look at the force measurements, we shall briefly introduce the
‘vortex force’, due only to the dynamics of vorticity, and the equations to compute
it from the measured total force. As performed by Govardhan & Williamson (2000),
based on the suggestions of Lighthill (1986) and several earlier studies, the total fluid
force (Ftotal) can be split into a ‘potential force’ component Fpotential , given in this case
by the potential added mass force, and a ‘vortex force’ component (Fvortex) that is due
to the dynamics of vorticity, where Fpotential = −[CAmd ÿ(t)] and md = displaced fluid
mass. The vortex force Fvortex , can thus be computed from

Fvortex = Ftotal − Fpotential . (4.1)

Normalizing all the forces by ( 1
2
ρU 2πD2/4) gives

Cvortex(t) = Ctotal(t) − Cpotential(t), (4.2)
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where Cpotential may be easily calculated from a knowledge of the instantaneous body
acceleration ÿ(t). The vortex force coefficient, Cvortex(t), may thus be calculated from
the measured total force using equation (4.2). The concept of vortex force, or the rela-
tionship between impulse of vorticity and fluid momentum, has been extensively used
in fluid mechanics (Lamb 1932; Moreau 1952; Batchelor 1967; and others), prior to
Lighthill’s work, and also discussed at length subsequently in Saffman (1992). The
‘vortex phase’ (φvortex) is, for the first time, introduced and defined in Govardhan &
Williamson (2000) to be the phase between Cvortex(t) and the body displacement, y(t),
while the conventionally used total phase (φtotal) is the phase between Ctotal(t) and
the body displacement, y(t). One can now write two formulations for the equation of
motion:

equation of motion using ‘total force’

mÿ + cẏ + ky = Ftotal sin (ωt + φtotal), (4.3)

equation of motion using ‘vortex force’

(m + mA)ÿ + cẏ + ky = Fvortex sin (ωt + φvortex). (4.4)

Obviously, these equations of motion assume a sinusoidal forcing which is only
approximately correct. For non-sinusoidal fluid forcing, one would use the amplitude
of the fundamental component of the fluid forces (at frequency ω).
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We now select two values of normalized velocity, (U ∗/f ∗)S = 1.0 and 1.7, in figure 8,
to represent conditions in the heart of mode I and mode II regimes (respectively).
Although the transition between these two modes is continuous for these higher mass
ratios, we expect these conditions to represent different phenomena for very low
mass, where we found a distinct separation between modes I and II in figure 8. Cyclic
variations of total, potential and vortex force are shown in figure 10 (phase-averaged).
Immediately, one notes the large shift in the phase of the vortex force (φvortex) relative
to body motion, y(t). The shift in vortex phase is also evident in figure 11, indicating
φvortex ∼ 50◦ when mode I is prevalent, and φvortex ≈ 140◦ when mode II has a peak
amplitude at (U ∗/f ∗)S = 1.7. There is some similarity with the cylinder VIV case of
Govardhan & Williamson (2000) in that φtotal passes through 90◦, as the mode II
response reaches a peak amplitude.

These results suggest that at very low mass ratios (e.g. our case for m∗= 0.45) there
will be a jump in phase between the modes I and II, as indicated by figure 8 in the
{(U ∗/f ∗)S, A∗

y} plane. We shall now show in § 5 how the shift in vortex phase between
the modes is the result of a clear shift in the timing of vortex formation. However, it
is obvious that in both cases, despite the change in vortex timing, the vortex dynamics
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are such that there is a net positive energy transferred from the fluid to the body
motion, to sustain vibrations.

5. Modes of vortex formation
Although there appear to be no previous visualizations of the wake of a transversely

oscillating solid sphere, the recent work of Brücker (1999), on the wake of a rising
bubble undergoing zig-zag motion, suggests that the wake consists of trailing vortices
from which one may infer hairpin vortices. In the present section, we shall use DPIV
measurements of the vorticity in the wake, in a manner similar to that of Brücker
(1999, 2001), to show the hairpin vortex structure for both mode I and mode II sphere
oscillations. Further, the streamwise vorticity measurements will be used to show a
change in the timing of vortex shedding relative to body motion as we pass from
mode I to mode II, which is consistent with the change in vortex phase seen in the
previous section.

Extensive flow visualization has been carried out to observe the formation of vortex
loops in the wake of the vibrating sphere, for the different modes. We include only one
example here, in figure 12, which demonstrates the principal vortex loops observed
simultaneously from two orthogonal directions. A common phenomenon with all the
visualizations is the fact that the heads of the loops pinch off (at a point several
diameters downstream) to form vortex rings, and we discuss this later. However, close
to the body, we have measured the streamwise vorticity in a plane normal to the flow
and at 1.5D downstream of the sphere centre, to yield the dominant counter-rotating
streamwise pairs in figure 13, for both modes. As the sphere oscillates, the strength of
the vortex pair reduces and a pair of opposite sign is generated on the other side of the
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Side view 

Top view

Figure 12. Flow visualization of the wake of a vibrating sphere, showing streamwise vortex
loops and the development of a vortex ring at the end of the loop. The dynamics are for mode II,
A∗

y = 0.90; (U ∗/f ∗)S = 1.80; Re = 2000.

body. This is consistent with the formation of a chain of vortex loops, on both sides
of the wake. (It should be noted that, in figure 13, the location of the sphere has been
adjusted, in an approximate manner, for the time taken by the vortex structure to con-
vect to the plane where vorticity is measured, using a convection speed (Uv) computed
from vorticity dynamics in the equatorial plane (see figure 15)). The distinct differences
in the timing of vortex pair formation for modes I and II, in figure 13, is consistent
with differences in the vortex phase between the modes, found earlier in figure 10.
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Figure 13. Streamwise vorticity plots showing the dominant counter-rotating vortex pair in
both mode I and mode II. Each of these plots from cross-sectional DPIV measurements are
separated by a quarter-period, and were measured at x/D = 1.5. Blue contours show clockwise
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Mode I: (U ∗/f ∗)S = 0.98, A∗= 0.50, mode II: (U ∗/f ∗)S = 1.80, A∗=0.90. Re ≈ 3000 in both
cases.

A spatio-temporal reconstruction of the sphere wake has been made in figure 14,
employing 16 streamwise vorticity fields for each half-cycle of sphere oscillation.
(We also use for the image a convection velocity U , so that time t is converted
into streamwise location, x = Ut). The resulting three-dimensional structure clearly
exhibits a two-sided chain of vortex loops for each mode.

In both modes I and II, the vorticity structure of figure 14 indicates the development
of a vortex ring at the head of the vortex loop, due to the pinching off and vortex
reconnection of the two sides of the loop. By observing the vertical vorticity in
the equatorial plane in figure 15 (i.e. looking vertically downwards in the water
channel), we can see a horizontal ‘cut’ through the developing vortex ring, showing
the formation of both signs of vorticity. Interestingly, the vertical vorticity in the
equatorial plane resembles the 2P mode of vortex pair formation in the case of the
vibrating cylinder (Williamson & Roshko 1988), although its formation is slightly
further downstream than for the vibrating cylinder.

A schematic diagram of the pinching off and vortex reconnection at the head of a
vortex loop is shown in figure 16. Such a vortex reconnection resembles the manner
by which vortex rings are formed out of a pair of vortices, when subjected to the
long-wavelength Crow instability (see, for example, Leweke & Williamson 2004).
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The formation of interlinked vortex rings is a phenomenon seen in the fascinating
dye visualizations of Magarvey & Bishop (1961) in the wake of a liquid drop, and
also observed in computations of a sphere wake by Mittal (1999) at lower Reynolds
numbers of around 500. Interlinked vortex loops are a feature of the computations
of Tomboulides, Orszag & Karniadakis (1993), and also of the experiments of
Sakamoto & Haniu (1990), Ormières & Provansal (1999) and in the very clear



Vortex-induced vibrations of a sphere 33

y
—
D

–2

0 2 4 6

0

2

x/D

Figure 15. Equatorial-plane vorticity plot showing the presence of a counter-rotating vortex
pair downstream that represents a cut through a vortex ring. Coloured blue contours show
clockwise vorticity, red anti-clockwise vorticity. Contour levels shown are ωD/U = ± 0.25,
± 0.5, ± 0.75, . . . . Re ≈ 3000, (U ∗/f ∗)S = 1.80.

U

U

U

Equatorial  plane 

Vortex ring 

Vortex loop 

Figure 16. Diagram showing pinch-off and vortex reconnection leading to formation of a
vortex ring at the downstream end of a vortex loop.

visualizations of Leweke et al. (1999), all concerned with the wake of a static sphere.
A two-sided chain of (alternating sign) vortex loops has been observed experimentally
in the range Re > 800 by Sakamoto & Haniu (1990), quite analogous to our results
here. However, there is a central distinction between the wake behind a static sphere
and the flow here; namely that in the natural (static) case, the vortex loops are
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Figure 17. Diagram which highlights the analogy between the aircraft trailing vortices and
the sphere streamwise vortex pair, both of which yield a lift force on the body. The upper
vortex of strength Γ ∗ is situated a distance b∗ from its counter-rotating vortex.

formed in a somewhat irregular fashion, and the azimuthal location, at which loops
are formed changes slowly from cycle to cycle, as summarized by Mittal (1999).

In the case of the present vortex-induced vibrations of a sphere, there is obviously
a preferred orientation of the loops to maintain a symmetry with the (horizontal)
plane containing the principal transverse vibrations. We observe that as the sphere
accelerates to one side (transverse to the flow), the vortex pair orients itself such that
one vortex is vertically above the other, so that approximately the horizontal plane
acts as a plane of symmetry. This particular arrangement of vortex pairs (as opposed
to being oriented at some other azimuthal angle), would give rise to a transverse (lift)
force, consistent with the sphere transverse vibrations, rather like the vertical lift force
associated with aircraft trailing ‘tip vortices’.

6. Analogy with wing trailing vortices: prediction of lift force
The principal vortex structure coming out of the vortex formation region behind the

vibrating sphere appears to be counter-rotating vortex pairs (with secondary structures
as an auxiliary feature). These streamwise vortex pairs are aligned approximately with
the free stream, in a manner similar to trailing vortices behind aircraft wings. As a
result of this observation, we approach a prediction of transverse force, or ‘lift’ force
on the body, in the same manner as one might compute the lift on an aircraft
wing from a knowledge of the strength and spacing of the trailing ‘tip’ vortices.
We represent this vortex pair structure behind the sphere and a wing in figure 17,
indicating the sense of the lift force that is expected. It can be deduced that the lift
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force (see, for example, Saffman 1992) can be given by the following expression:

Fvortex = −ρUvΓ b, (6.1)

where Fvortex is the vortex force; Uv is the convection speed of the trailing vortices
(typically Uv/U = 0.5 at the location where we measure streamwise vorticity); Γ is
the strength of the upper vortex in figure 17; and b is the spacing between the
vortices. This expression may be derived from considerations of the rate of change
of transverse impulse due to the streamwise vorticity distribution. Here we use the
expression in a quasi-steady manner, using the approximation that the instantaneous
force F (t) depends only on the instantaneous values of [Γ (t), Uv(t), b(t)]. We may
normalize the force by ( 1

2
ρU 2πD2/4) to give

Cvortex =
8

π
U ∗

v b∗(−Γ ∗), (6.2)

where U ∗
v =Uv/U ; b∗ = b/D; Γ ∗ = Γ/(UD). The speed (U ∗

v ) and spacing (b∗) remain
positive at all times, so that Cvortex � 0 when Γ ∗ � 0. We may understand the vortex
force in a physical manner, by considering the ‘downwash’ fluid motion between the
vortices. For a positive upper vortex, the ‘downwash’ between the vortices flows to
the right, and thus the force is to the left when looking upstream.

Evaluation of this vortex force is made in figure 18 for each of the modes I and
II from vorticity measurements behind an elastically mounted (y-only) sphere, and
has a reasonable agreement with the directly measured force using the force balance.
Both the magnitude and phase of the vortex force compare quite well. The principal
conclusion one might draw from this agreement is the fact that most of the transverse
force on a sphere is given by the dynamics of the streamwise vorticity. The orientation
of the trailing vortex pair in the near wake appears to yield the direction of the force
on the body. Therefore, we might also conclude that the vortex-induced vibrations of
such a three-dimensional body are induced by the streamwise vorticity, which is quite
distinct from bodies such as the cylinder whose dynamics are induced by vorticity
normal to the flow.

We note that the spacing between the vortices reaches a maximum when the strength
of each vortex pair is a maximum. However, the phase of maximum vortex force is
quite distinct for each mode, as noted in figure 18; the force is roughly in phase with
body oscillations for mode I and almost out of phase for mode II. This is consistent
with earlier measurements of vortex phase (φvortex) in figure 11.

7. Periodic oscillations at high (U ∗/f ∗)S: mode III response
A remarkably periodic and robust mode was unexpectedly discovered in the regime

(U ∗/f ∗)S = (fvo/f ) = 3 to 8, by Jauvtis et al. (2001), whose response amplitude plot
is shown in figure 19(a). There is no equivalent mode for the cylinder VIV, and we
note that it represents a low-oscillation frequency (f ) relative to the frequency of
vortex formation (fvo) for the static sphere. In other words, we have a highly periodic
vibration of the sphere over a wavelength for which the static body would exhibit
between 3 and 8 vortex structures. We can see multiple small-scale structures in the
flow visualization, typical of mode III, in figure 19(b). No clear structure could be
simply associated with a half or full wavelength of the sphere vibration from these
extensive studies. However, streamwise vortex structures appeared to remain as a
thread underlying the multiple smaller vortices.

Somehow the flow must yield a forcing on the body at this low frequency, sufficient
to deliver a net energy transfer into the body motion. If one assumes that the
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transverse displacement and vortex force are represented by the following functions:

y(t) = A sin(ωt), (7.1)

Fvortex(t) = Fo sin(ωot + φ), (7.2)

then one can show, as in Jauvtis & Williamson (2004), that the net energy transfer
over a cycle of body oscillation (E) is given by

E = (FoAω) sin φ

∫ T

0

cos(ωt) cos(ωot) dt. (7.3)
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Figure 18. Vortex force (Cvortex) is evaluated using the analogy with airplane trailing vortices.
Predicted vortex force compares reasonably well with direct force measurements (solid line in
lowest plot), using equation (6.2). (a) Mode I: in this case, (U ∗/f ∗)S = 1.0, corresponding to
mode I in figure 10. (b) Mode II: in this case, (U ∗/f ∗)S = 1.7, corresponding to mode II in
figure 10. Re = 3000 in both (a) and (b).

This integral is only non-zero if ω =ωo. In other words, as one might expect, the body
vibrates because there is a component of the vortex force that is synchronized with
the body oscillations. We seek to identify the repeatable vortex dynamics underlying
the phenomena, and to further characterize the mode with direct force measurements.
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Figure 19. Amplitude response and flow visualization for mode III vibrations. The amplitude
response in (a) shows the huge extent of the periodic mode III oscillations, made evident
by noting how narrow the modes I and II appear in this plot. m∗= 75, (m∗ + CA)ζ = 0.14.
The flow visualization in (b), shows multiple vortex structures per half-cycle of oscillation,
that are not synchronized with the body motion. (U ∗/f ∗)S =3.5; A∗= 0.40. Re at A∗

max in
mode III = 9000.

As with mode I and II, we measure streamwise vorticity in the same manner,
and find for mode III in figure 20 a clear wake structure locked with the body
frequency, namely a two-sided chain of trailing vortex pairs as for the other modes.
This is demonstrated by the spatio-temporal reconstruction of the vorticity into the
remarkably long vortex loop structures in figure 20.

These vortex dynamics give rise to a net energy transfer from the fluid force into
the body motion, as shown in figure 21, where we again evaluate the vortex strength
Γ ∗ and vortex force Cvortex as a function of time. The normalized rate of energy
transfer (or ‘power in’) is given by

ėv = Cvortex ẏ∗, (7.4)

where y∗ = y/D, so we can combine this with equation (6.2) to give

ėv =
8

π
U ∗

v b∗[−Γ ∗ẏ∗]. (7.5)
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Figure 20. Phase-averaged streamwise vorticity plots for mode III at x/D = 1.5, showing that
there exist repeatable streamwise vortex structures in the near wake. Each of the sequential
vorticity plots (a) to (d) is separated by a quarter period. The streamwise vorticity is measured
at the downstream location x/D = 1.5. Also shown is a three-dimensional reconstruction of the
streamwise vortex structure that is synchronized to the low oscillation frequency. Blue shows
clockwise vorticity, red counter-clockwise vorticity. Contour levels shown are ωD/U = ± 0.3,
± 0.6, ± 0.9, . . . . (U ∗/f ∗)S = 3.5, A∗=0.40. Re ≈ 3000.



40 R. N. Govardhan and C. H. K. Williamson

0 0.5 1.0 1.5 2.0
–0.4

0

0.4

+ + +

– – ––

+

–0.4

0

0.4
–1

0

1
–0.75

0

0.75

y
—
D

Γ*

t/T

ėv
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Figure 21. Vortex force and energy transfer in mode III. Phase-averaged force (Cvortex)
showing clearly that there exists a component of the force at the low body oscillation
frequency. The energy transfer (ėv) indicates that there is net positive energy transfer to the
body over an oscillation cycle. Solid Cvortex curve is from direct force measurement.

With the body at its maximum negative extreme position, y∗ = −0.5 in figure 20(a)
we then have zero velocity, ẏ∗ = 0, and thus the energy transfer is zero, ėv = 0. If we
now consider case (c) in figure 20, ėv ∼ 0 because the net vortex pair strength is small,
Γnet ∼ 0. On the other hand, between (a) and (c), we have a maximum energy input
into the body motion when ẏ > 0 and Γ ∗< 0, corresponding to case (b) in figure 20.
The main point to be made is that there is an underlying streamwise vortex structure
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which is synchronized with the sphere vibration frequency, and which yields a net
positive energy transfer into the vibration over a cycle, allowing a highly periodic
mode III vibration to ensue.

In essence, it seems that the tethered, or elastically mounted, sphere is intrinsically
unstable. In the absence of vibration in mode III, there would be no specific forcing
at the low natural frequency of the structure. However, if the body is perturbed, and
vibrates in the transverse direction, it generates a self-sustaining vortex force to
amplify and saturate the body vibrations, to possibly large amplitudes. In this
manner, it represents an example of ‘movement-induced excitation’ categorized by
Naudascher & Rockwell (1994). It should also be mentioned that broad low
frequencies were measured in the streamwise vortex formation by Brücker (2001)
for a static sphere, and so the sphere wake is naturally responsive to low-frequency
disturbances.

8. Existence of a critical mass for sphere VIV
It has recently been discovered that a critical mass exists, for the case of vortex-

induced vibrations of a cylinder, below which a large-amplitude response will persist
up to infinite normalized velocity (see review of Williamson & Govardhan 2004). This
surprising result shows that there is an infinitely wide regime of U ∗ for resonance.
It was deduced that all vortex-induced vibration systems, that are represented well
by equations (1.1)–(1.3), will necessarily exhibit a critical mass (m∗

crit ). The numerical
value of the critical mass is determined by the maximum negative value of the effective
added mass (i.e. by the minimum of CEA) within the regime of significant vibration
in the amplitude response plot. For a transversely vibrating cylinder, the critical
mass takes on the value m∗

crit = 0.54. It must be noted carefully that this result (in
Govardhan & Williamson 2000, 2002) is valid for low mass–damping, (m∗ζ ) < 0.05.
We might perhaps expect a critical mass of this order of magnitude for the tethered
or elastically mounted sphere.

In the present case of the sphere, we compute CEA, from frequency responses, at
low m∗, of the type shown in figure 1, using equation (1.5) such that

CEA = m∗
(

1 − f ∗2

f ∗2

)
+

(
CA

f ∗2

)
. (8.1)

The critical mass ratio (m∗
crit ) may be determined, as given by Govardhan &

Williamson (2002), by evaluating the maximum value of −CEA that can be provided
by the vortex dynamics, where the maximum is taken over all the points on the
synchronized part of the amplitude response. The reason for this may be explained
using the frequency equation (1.5) which is recalled below:

f ∗ =

√
(m∗ + CA)

(m∗ + CEA)
.

As m∗ is gradually reduced, the term (m∗ + CEA) will first become zero at a point
on the amplitude response with the largest −CEA, and the frequency response f ∗ will
then tend to infinity.

The evaluated CEA from two low-mass-ratio responses shown in figure 22 indicates
that the most negative value of CEA is between −0.55 to −0.65 at low mass–damping
((m∗ + CA)ζ < 0.04). Also, shown in the figure is CEA data from the recent detailed
experiments of Horowitz & Williamson (2005) for unrestrained rising spheres, where
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Figure 22. Evaluation of effective added mass (CEA) and critical mass (m∗
crit ). Calculated

values of CEA from frequency responses of low-mass-ratio elastically mounted spheres,
and unrestrained rising spheres. In both cases, the minimum value of CEA ≈ −0.6, thus
yielding a critical mass, m∗

crit= [−CEA]max ≈ 0.6. �, �, elastically mounted sphere (m∗= 1.31
and m∗= 2.83); �, unrestrained rising sphere (Horowitz & Williamson 2004).

U ∗ = ∞. In this unrestrained (no restoring force) case, CEA values have been evaluated
using the relation: CEA = −m∗, as discussed in Govardhan & Williamson (2002). The
data for the unrestrained sphere yields a critical mass of m∗

crit = 0.61. Given the
intrinsic imprecision in measuring CEA from frequency responses in the present study,
we may deduce an approximate value of critical mass as

m∗
crit = 0.6 ± 0.05.

When we have a light sphere, whose mass is below critical, the frequency (f ∗)
increases continuously as flow velocity (U ∗) is increased, such that the parameter
(U ∗/f ∗)S approaches an asymptote. This point is defined as the ‘Operating point’ by
Govardhan & Williamson (2002), and is further discussed in that paper. The main
point here is that we predict the large-amplitude response will persist to infinite U ∗, if
m∗ � 0.6 for the elastically mounted sphere. In the case of the tethered sphere, these
deductions are valid for large U ∗, but not necessarily if that also induces large tether
angles (the angle by which the tether leans over due to sphere drag). In that case
some influence on the numerical value of the critical mass is expected.

Critical mass appears to be generic to VIV systems, as discussed in Govardhan &
Williamson (2002) and in the review of Williamson & Govardhan (2004). For example
it takes on the value 0.54 for a cylinder in transverse vibration, 0.52 for a cylinder
in two degrees of freedom, 0.5 for a pivoted cylinder, and approximately 0.6 for the
sphere VIV. It is noted that the values are (at least) valid for moderate Reynolds
numbers (typically Re ∼ 2000 to 20 000), and for low mass–damping (m∗ζ < 0.04) for
these VIV systems.
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9. Concluding discussion
Despite the extensive research concerning cylindrical bodies in vortex-induced

vibration, there have been very few studies regarding vibrations of tethered structures,
even though tethered bodies are a common configuration. In this paper, we have
studied the case of an elastically mounted sphere, induced to vibrate by its own vortical
wake, in a motion transverse to a free stream. In parallel, we have investigated the
vortex-induced vibrations of a tethered sphere, which principally involves vibration
both streamwise and transverse to the flow. In these problems, we have been able to
measure displacement, as well as force and vorticity dynamics, all simultaneously.

When the oscillation frequency (f ) is of the order of the static-body vortex shedding
frequency (fvo), there exist two modes of periodic large-amplitude oscillation, defined
as modes I and II, separated by a transition regime exhibiting non-periodic vibration.
In the case of the very light tethered body, the transition between modes is quite
distinct, especially when the response amplitude is plotted versus the parameter
(U ∗/f ∗)S, where a jump between modes is clearly exhibited. In the case of elastically
mounted bodies of higher mass, the transition between modes is more continuous, and
the transition is only evident as a dip in the amplitude response plot. From our direct
measurements of force (which necessarily has been done for the somewhat higher
mass ratios), we have observed that the phase of the vortex force relative to sphere
dynamics is quite different between the modes I and II. This difference in the phase
of the vortex force is consistent with the large difference in the timing of the vortex
formation between modes, which was observed from the vorticity measurements for
the light sphere vibrations.

The dominant wake structure for both modes is a chain of streamwise vortex loops
on alternating sides of the wake. Streamwise vorticity was measured in the near-wake
formation region of the sphere, and we performed a spatio-temporal reconstruction
of the streamwise vorticity structures to show vividly, in three dimensions, the
principal chain of streamwise vortex pairs, which are synchronized at the sphere
vibration frequency. The induced vibration of the body locks in a particular preferred
orientation for the vortex loops, to maintain symmetry with the (horizontal) plane
containing the principal body displacement. This is unlike the azimuthal wandering
of the wake structures behind static spheres, which have been observed from flow
visualization or from numerical simulations at low Reynolds numbers, as discussed
by Mittal (1999).

Flow visualization further downstream shows that the heads of the vortex loops
pinch off to form a sequence of vortex rings. Vorticity in the equatorial plane (the plane
of symmetry between each streamwise vortex in a given pair) shows the development
of the pinching-off process, which yields counter-rotating vortex pairs in this plane.
The appearance of this vorticity distribution is not unlike the 2P mode of vortex
dynamics for the cylinder VIV, where one has two pairs of vortices each cycle of body
vibration (Williamson & Roshko 1988). However, in the present case, the two vortex
pairs in the equatorial plane represent a cut through a pair of vortex rings, and we
might define the vortex mode evolving further downstream as a ‘2R’ mode, or two
vortex rings per cycle of body motion, in analogy with the cylinder vortex mode.

If one looks upstream from directly behind the vibrating sphere, at a plane normal
to the flow, where particle motions are illuminated, it is immediately apparent that in
all modes, there is a synchronized streamwise vortex pair formation in each half-cycle
(as measured above). However, what immediately struck us in observing this flow in
real time, is that the dynamics appear just like those vortex motions behind a wing,
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namely a trailing vortex pair. In the case of the wing, one can predict the lift force by
considering the rate of change of impulse for the streamwise vortex pair. We therefore
employ a quasi-steady assumption, and compute the normalized ‘lift’ (or transverse
vortex force) on the sphere,

Cvortex =
8

π
U ∗

v b∗(−Γ ∗),

where vortex strength Γ ∗ and vortex spacing b∗ are measured as a function of time. We
find a reasonable agreement between these predictions and direct force measurements,
which is significant because it indicates that the principal vorticity dynamics giving
rise to vortex-induced vibration for a sphere are the motions of these streamwise
vortex pairs, rather than the dynamics of vorticity normal to the flow as in the case
of cylinder VIV.

A compilation of peak amplitude response in the Griffin plot, as a function of the
mass–damping, (m∗ + CA)ζ , of the vibrating sphere, exhibits a good collapse of data,
indicating a maximum saturated response of around 0.9 diameters, as mass–damping
becomes extremely small. These results appear to be reasonably independent of the
Reynolds numbers from 2000 to 12 000, and quite independent of the extent of
streamwise vibrations of the tethered sphere. (One achieves a similar peak response,
at a given mass–damping, even as the mass ratio, and therefore also the streamwise
amplitude, are varied). This is quite different to the case of cylinder VIV (Jauvtis &
Williamson 2004), where small increases in streamwise motion can change the mode
of vibration and markedly increase the transverse vibration amplitude. It seems that
the resulting effects of streamwise sphere motion on the streamwise vorticity and the
transverse forces are less than for the cylinder VIV, where streamwise motion can
distinctly change the formation of vorticity normal to the flow, and the resulting
energy transfer to body vibration.

Following recent studies of cylinder VIV, we deduce the existence of a critical mass
ratio, m∗

crit ≈ 0.6, below which large-amplitude vibrations are predicted to persist to
infinite normalized velocities. This might be compared with the discovery of such
critical mass in other VIV systems: for example, for the transverse motion of a
cylinder, m∗

crit = 0.54 has been found (Govardhan & Williamson 2000, 2002); for the
two degree of freedom cylinder VIV in XY motion a value of 0.52 is found (Jauvtis &
Williamson 2004); for the pivoted cylinder VIV a value of 0.5 is observed (Flemming &
Williamson 2005).

An unexpected large-amplitude and highly periodic mode (mode III) is found at
distinctly higher flow velocities where the frequency of vibration (f ) is far below the
frequency of vortex shedding for a static body (fvo); i.e. f 
 fvo. This has no apparent
counterpart in the cylinder VIV case. The response amplitude plot is quite broad,
extending continuously from (U ∗/f ∗)S =3 to 8, and should not be confused with
subharmonics. It appears that the low-frequency chain of streamwise vortex loops is
able to impart lift (or transverse force) to the body, yielding a positive energy transfer
per cycle, as indicated by our measurements of vortex force and displacement. This
appears to be an example of the kind of vibration categorized by Naudascher &
Rockwell (1994) in their book, as ‘movement-induced vibration’. The sphere needs
to move in the first place, in order to generate the self-sustaining mechanism of
vortex-induced vibration. Without vibration of the body, there is no forcing at the
sphere natural frequency to induce body motions.

Regarding further research concerning vibrating spheres, we are vigorously studying
the wakes and dynamics of freely rising and falling spheres, and other bodies.
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Preliminary results indicate strong similarities with the present study concerning
tethered or elastically mounted bodies, under some conditions. One result stands out
in particular; namely, the similarity of the mass where the unrestrained rising body
suddenly starts to vibrate, which corresponds to the critical mass observed in the
present work, both of which yield such a critical mass close to m∗

crit = 0.6.
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